

Introduction
Stereoscopic displays are used to
visualize many 3-D environments. Two
images are rendered, one from the
perspective of each eye, and a virtual
image is composed from these. If this
image is too close to or too far from the
viewer, optical problems result. To
correct for this, the nearest and farthest
points in a scene must be computed. We
explore GPU programming methods to
efficiently compute these values.

Background
Colin Ware did experiments to determine
what model of eye separation to use in
stereoscopic displays. His scenes
consisted of “large continuous surfaces”
and he used 100 samples from the depth
buffer for his nearest/farthest point
adjustments. However, this provides a
good enough approximation only in
certain cases, such as uncomplicated
scenes.

Wartell implemented a massive, whole-
planet stereoscopic environment. One
hundred samples would not have been
enough to provide a reasonable
approximation. Instead he read every
twentieth row to main memory, where
approximations to the minimum and
maximum values were found. This
provided a working estimation, but it
scales with pixel read back speeds, a
statistic which is not increasing anywhere
near the rate that GPU performance is.

Kevin
Bensema,
Grove City
College.
Dr. Zachary
Wartell,
UNCC.

Efficient Depth-Extreme Retrieval for Use in Stereoscopic Applications
Kevin Bensema, Dr. Zachary Wartell

{kbensema, zwartell}@uncc.edu

Research
 We implemented and timed Wartell’s

algorithm to use as a baseline.

 We realized that running as many of

the comparisons on the GPU as
possible would limit the amount of
data that had to be sent over the
system bus.

 We found a way to allow fragment

shaders – small GPU programs – to
access the depth buffer via a texture.

 Several versions of Wartell’s striping

algorithm were implemented on the
GPU.

o A straightforward version
o Two versions that attempted

to gain a speed increase by
cache-friendly programming.

 A separate algorithm, based on taking

evenly spaced point samples from the
depth buffer.

 We ran timing code comparing all of

the shader-based algorithms against
each other, and Dr. Wartell’s
algorithm. Tests were run on four
different video cards: the 6800GT,
7950GT, 8800GTS (G80), and the
workstation FX4500 card.

 Due to timer precision issues, we

timed 100 runs of each algorithm, and
then divided that time by 100 to get an
accurate runtime.

 A simulated cityscape was

implemented and used as a test bed
to verify that our algorithms were
indeed sufficiently accurate enough to
use.

Impact

• The results of our timing are
shown below.

Comparison of Algorithm Runtimes

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

CPU K-stripes Vertical contiguous
stripes

GPU K stripes GPU point samples

Method used

Ru
nt

im
e

in
 s

ec
on

ds

• The GPU version of Dr.

Wartell’s algorithm did indeed
run faster than the CPU
version.

• We found that the contiguous
methods that attempted to be
faster by cache-friendly
programming failed.

• Vertical contiguous
stripes ran slower than
the CPU methods.

• A Horizontal one was
even worse

• Point Sampling methods ran
the fastest.

• Error analysis showed that
Point Sampling was also more
accurate than stripes.

Fig. 7. Error Analysis

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

'1 Point 4 Points 9 Points K-Striping

Method

W
or

ld
 U

ni
ts

Graph of measurement error

Future Work
In the future, we plan to implement our
algorithm in the CAVE stereoscopic display
in our labs to further test reliability and
practical speed improvements. NVIDIA and
ATI have developed SDKs-CUDA and
STREAM, respectively-that allow mostly
standard C code to run on certain video
cards. We intend to explore the use of one
of these development kits to implement the
adjustment algorithm entirely on the GPU,
thus eliminating most or all CPU-GPU
communication overhead.

Conclusions
 We determined that while running

implementations of the striping
algorithms put forward by Wartell in
his whole-planet environment run
much faster on the GPU than on the
CPU, but the GPU-based point
sampling ran faster still.

 Error analysis showed that the point

sampling method also returned more
accurate data than the striping
methods.

