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Air Pollution
B

11 You are concerned about air pollution in your city

0 Finding the causes of the pollution

O Traditional Setup

® Fixed Sensors
O Crowdsensing Solution?
01 You could start a crowdsensing campaign
O Recruit friends, family, and strangers

O Collect particulates per million



Crowdsensing
—

01 Volunteers collect data with smartphones

0 Variety of sensors
O Accelerometer
o GPS
O Light Sensor
O Microphone

0 Cameras




Challenges of crowdsensing

-4
01 Energy consumption
O Sensors require energy

O Communication is one of the biggest energy drains

01 Monetary Costs

O Mobile data plans are not free nor “unlimited”

0 Both of these could decrease participation



Traditional Crowdsensing
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Model-Driven Data Acquisition
—
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Experimenting with Models

o Implemented a simulator in Java that can be used
to experiment with models and implementations

o Experimental Variables:
o Degree of mobility
o Density of network
o Type of data
o Length of learning phase

0 Evaluation of Metrics
o Length of learning

o Accuracy of model
o Number of Updates



DB P (Derivative Based Predictions) [Raza 201 2]
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Expec’rq’rion: Performance will drop with mobility
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DI’O PS (model-Driven Optimizations for Public Sensing )[Philipp 201 3]

Expectation: Model will perform well, but will consume more
energy than DBP

Multivariate Gaussian
Distribution Model

More Complex Calculations
More data needed

Curnulative Frobability




Experimental Setup
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5 Simulator built in Java :ﬁioé=gk
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o Mobility Traces
o Cab spotting data from Crawdad
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Conclusions
B

1 Model-Driven Data Acquisition
O Building a model rather than constantly sending data

O It can help reduce communication
01 The simulator is still under development

0 Looking for additional data sets to use
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Questions’
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