EXPERIMENTS WITH MODEL-DRIVEN DATA ACQUISITION FOR CROWDSENSING

7/27/2013 Phillip Dold

Socially Relevant REU Program 2013

Air Pollution

- You are concerned about air pollution in your city
- Finding the causes of the pollution
 - Traditional Setup
 - Fixed Sensors
 - Crowdsensing Solution?
- You could start a crowdsensing campaign
 - Recruit friends, family, and strangers
 - Collect particulates per million

Crowdsensing

- Volunteers collect data with smartphones
- Variety of sensors
 - Accelerometer
 - GPS
 - Light Sensor
 - Microphone
 - Cameras

Challenges of crowdsensing

- Energy consumption
 - Sensors require energy
 - Communication is one of the biggest energy drains
- Monetary Costs
 - Mobile data plans are not free nor "unlimited"
- □ Both of these could decrease participation

Traditional Crowdsensing

Collect data with

Sends data to

Model-Driven Data Acquisition

Experimenting with Models

- Implemented a simulator in Java that can be used to experiment with models and implementations
- Experimental Variables:
 - Degree of mobility
 - Density of network
 - Type of data
 - Length of learning phase
- Evaluation of Metrics
 - Length of learning
 - Accuracy of model
 - Number of Updates

DBP (Derivative Based Predictions) [Raza 2012]

Expectation: Performance will drop with mobility

- Simple Time Series
 Model
- Simpler Calculations
- Less data needed

DrOPS (model-<u>Dr</u>iven <u>Optimizations for <u>P</u>ublic <u>S</u>ensing)[Philipp 2013]</u>

Expectation: Model will perform well, but will consume more energy than DBP

- Multivariate Gaussian
 Distribution Model
- More Complex Calculations
- More data needed

Experimental Setup

- Simulator built in Java
 - Estimates Energy usage
 - Communication
 - Sensors
- Datasets
 - Intel Lab
 - Lausanne Urban
 - Canopy Experiment
- Mobility Traces
 - Cab spotting data from Crawdad

Intel sensor lab

Conclusions

- Model-Driven Data Acquisition
 - Building a model rather than constantly sending data
 - It can help reduce communication
- The simulator is still under development
- Looking for additional data sets to use

Questions?

References

Philipp, D., Stachowiak, J., Alt, P., Durr, F., and Rothermel, K. DrOPS: Model-Driven Optimization for Public Sensing Systems. In 2013 IEEE International

Conference on Pervasive Computing and Communications (PerCom) (PerCom 2013)

(San Diego, CA, USA, March 2013), IEEE Computer Society, pp. 1-8.

Raza, U., Camerra, A., Murphy, A. L., Palpanas, T., and Picco, G. P.

What does model-driven data acquisition really achieve in wireless sensor networks?

In Pervasive Computing and Communications (PerCom), 2012 IEEE International

Conference on (2012), IEEE, pp. 85-94.