Gaze Estimation in Camera Networks

Peter Malmgren

Source: Pets 2007 Surveillance Dataset

Related Work: Parts based models

Their data:

Our data:

Source: Face Detection, Pose Estimation and Landmark Localization in the Wild

4

Related Work: Detection models

Pan

Source: Pointing 2004 ICPR Workshop

Problem 1: Arbitrary Boundaries

These are now in thiffspene categories!

Pan

Problem 2: Similar appearance

Looking left

Looking right

Source: <u>IIT (Italian Institute of Technology) Head Orientation Dataset</u>

Our approach: Data-driven

Pan

How do we learn the groups? 40,000 faces (<u>IDIAP Head Pose Dataset</u>) Head-mounted tracker

80,000 non-faces

Training time

Determining head pose

Results

Tested on 2000 images

Median Tilt Error	Median Pan Error
29.8°	10.3°

Results from camera network

High error

Combine camera predictions

Future work: Integrate into existing camera networks

Questions?

Modified Adaptive Boosting

 $H(x, \theta)$: Prediction at pan/tilt angle

 $\boldsymbol{\Phi}_{t}(\boldsymbol{\theta}): \begin{cases} 1 \text{ if input is inside pan/tilt range} \\ 0 \text{ if input is outside pan/tilt range} \end{cases}$

Local Binary Patterns

LBP = 1 + 4 + 16 + 32 = 53

Local Binary Patterns

Unintended Feature Sharing

Evaluating Entire Gaze Space

Spherical Coordinates

z

x

 $P(
ho, heta, \phi)$

 $\blacktriangleright u$

